

Experiences building a common system

Mario.Lassnig@cern.ch
for the Rucio team

System overview

A look back
Discussion and interpretation

Rucio in a nutshell

- Rucio provides a mature and modular scientific data management federation
 - Seamless integration of scientific and commercial storage and their network systems
 - Data is stored in **global single namespace** and can contain **any potential payload**
 - Facilities can be distributed at multiple locations belonging to different administrative domains
 - Designed with more than a decade of operational experience in very large-scale data management
- Rucio manages location-aware data in a heterogeneous distributed environment
 - Creation, location, transfer, deletion, and annotation
 - Orchestration of dataflows with both low-level and high-level policies

- Principally developed by and for ATLAS, now with many more communities
- Rucio is open-source software licenced under Apache v2.0
- Open community-driven development process

Rucio main functionalities

Provides many features that can be enabled selectively

- Findable Accessible Interoperable Reusable
- Horizontally scalable catalog for files, collections, and metadata
- Transfers between facilities including disk, tapes, clouds, HPCs
- Authentication and authorisation for users and groups
- Web-UI, CLI, FUSE, and REST API
- Extensive monitoring for all dataflows
- Expressive policy engines with rules, subscriptions, and quotas
- Automated corruption identification and recovery
- Transparent support for multihop, caches, and CDN dataflows
- Data-analytics based flow control and SDNs
- 0 ...

Rucio is not a distributed file system, it connects existing storage infrastructure

- No Rucio software needs to run at the data centres
- Data centres are free to choose which storage system suits them best

More advanced features

Rucio for ATLAS

- A few numbers to set the scale
 - o 1B+ files, 500+ PB of data, 400+ Hz interaction
 - o 120 data centres, 5 HPCs, 2 clouds, 1000+ users
 - 500 Petabytes/year transferred & deleted
 - 2.5 Exabytes/year uploaded & downloaded
- Increase 1+ order of magnitude for HL-LHC

System overview

A look back

Discussion and interpretation

What we're particularly **interested in** for this talk is understanding the **benefits of the common software approach** and **how Rucio became a success.**

What's the **secret sauce**?

- Paul J. Laycock

Secret sauce?

Rucio was not started with the intention of becoming a common system!

- We had a particular problem to solve and we wanted to solve it in the best possible way
 - The predecessor system DQ2 had technical and operational limitations
 - The ATLAS computing model was evolving from static to dynamic
 - The gap between adapting DQ2 and having to reinvent DDM was too big
- A group of excited software engineers
 - Building something new is always fun!
 - Especially if these people have experience operating the system
 - With an open-source mindset

Secret sauce?

- **Early adoption of good practices** and tools in software engineering
 - Distributed coding with **git**
- \rightarrow We skipped SVN

- Mandatory **code review** \rightarrow No more cowboy coding
- Mandatory unit tests

- → A validated core system
- Validated master release process
- → Makes quick deployments possible
- Favour **sustainable long-term** decisions and developments
 - Since we had a quasi-working system, we were **double-developing** on DQ2 and Rucio
 - Long-term Rucio project timeline from 2011 to 2014 allowed us to \circ **do things right without pressure** of having to deliver a particular feature next week
 - Willing to explore and adopt ideas and paradigms from communities beyond HEP

Secret sauce?

- Be as open as possible while doing all that
 - Design discussions with ALICE (AliEN), LHCb (DIRAC), and CMS (PheDEx)
 - Continuous integration with the services provided by CERN IT
 - **Integration** of interested people into the development team
- All of this would not have been possible without the great support from our bosses!

- And then... Rucio took over in December 2014!
 - But it was still missing features that DQ2 had
 - And quite a **few bits were a bit wonky...** despite all the software engineering
 - But the Rucio platform was ready for adaptation and extension

The next 4 years

• Continuous improvements on the DDM system were now possible

- With reasonable effort by a fraction of the previously needed people
- Without a multi-month startup period for new people to be productive
- Modular concept eased system integration and gradual improvements
- **Easier deployment** became a large timesaver for central and the sites

Beyond required technical improvements

- o Integration of R&D programmes from PhD students, e.g. networks, clouds, transfer modelling
- Attending conferences and conferences beyond HEP, e.g., Supercomputing or CCGRID
- Establishing technical contacts from industry, e.g., via Google, Amazon, CERN KT

Regular events

- Community Workshops
 - CERN, Switzerland [2018]
 - University of Oslo, Norway [2019]
 - Fermilab, USA [2020]
- Coding Camps [2018] [2019] [2020]
- Development Meetings [<u>Weekly</u>]

A growing community

System overview A look back

Discussion and interpretation

Why a common data management solution?

- Shared use of the global research infrastructures will become the norm,
 especially with sciences at the scale of HL-LHC, DUNE, and SKA
 - Competing requests on a limited set of storage and network, data centres will be multi-experiment
 - Compute seems well-covered, e.g., good scheduling systems, interfaces, and specifications exist
 - O Data was always missing a common open-source solution to tackle our shared challenges
- Ensure more efficient use of available data resources across multiple experiments
 - Allocate storage and network based on science needs, not based on administrative domains
 - Orchestrate dataflow policies across experiments
 - Dynamically support compute workflows with adaptive data allocations
 - Unify monitoring, reporting and analytics to data centres and administration
 - Potential for **shared operations across experiments**

Community-driven development

- We have successfully moved to community-driven development
 - Requirements, features, issues, release are **publicly discussed** (e.g., weekly meetings, GitHub, Slack)
 - The core team is usually only **providing guidance** for architecture/design/tests
 - Usually 1-2 persons from a **community then take responsibility**to **develop** the software extension and also its **continued maintenance**

Communities are helping each other across experiments

- Variety of different topics addressed by focus groups
 - Third-party-copy, Data carousel, Quality of Service, Token-based authn/z, SDN and Networks, ...

A few quotes

- "... major part of it has been you and the team's willingness to invest the time to help others understand the system"
- "... a core which is not ATLAS, even if some of the optional pieces were. ...a willingness to work on them not being so"
- "... support for metadata is going to be a big deal for us"
- "I like Rucio because it solves a real problem and is not just a product."
- "... the general architecture makes it easy to outsource aspects"
- "... you basically remove / redistribute the admin burden / labour"
- "... the team responsiveness / engagement is a major selling point!"
- "The outstanding and friendly support..;)"

Summary

- Rucio was built as a scalable and adaptable data management platform
 - It seemed to solve the right problems at the right time
 - Open communication was key
 - Lots of effort from the core team beyond their initial ATLAS commitment
- Several experiments and communities went from evaluation to production
 - Strong participation for support, development, and deployment from many groups
 - Successful integrations with existing software and computing infrastructures
- Emerging strong cooperation between HEP and multiple other fields
- Community-driven innovations to enlarge functionality and address common needs
- Rucio has become a common standard as a collaborative open source project

Fresh off the press - IEEE Data Engineering article:

http://sites.computer.org/debull/A20mar/A20MAR-CD.pdf

Thank you!

Website

http://rucio.cern.ch

Documentation

https://rucio.readthedocs.io

Repository

https://github.com/rucio/

Images

https://hub.docker.com/r/rucio/

Online support

https://rucio.slack.com/messages/#support/

Developer contact

rucio-dev@cern.ch

Publications

https://rucio.cern.ch/publications

Twitter

https://twitter.com/RucioData

Backup

Architecture

Servers

- HTTP REST/JSON APIs
- Token-based security (x509, ssh, kerberos, ...)
- Horizontally scalable

Daemons

- Orchestrates the collaborative work
 e.g., transfers, deletion, recovery, policy
- Horizontally scalable

Messaging

STOMP / ActiveMQ-compatible

Persistence

- Object relational mapping
- Oracle, PostgreSQL, MySQL/MariaDB, SQLite

Middleware

- Connects to well-established products,
 e.g., FTS3, XRootD, dCache, EOS, S3, ...
- Connects commercial clouds (GCS, AWS)

Python

Support for Python2 and Python3

Rucio concepts - Namespace

• All data stored in Rucio is identified by a **D**ata **ID**entifier (DID)

- There are different types of DIDs
 - Files
 - Datasets Collection of files
 - Container Collection of dataset and/or container
- Each DID is uniquely identified and composed of a scope and name, e.g.:


```
detector_raw.run34:observation_123.root
```

Rucio concepts - RSEs

- Rucio Storage Elements (RSEs) are logical entities of space
 - No software needed to run at the facility except the storage system, e.g., EOS/dCache/S3, ...
 - RSE names are arbitrary, e.g., "CERN-PROD_DATADISK", "AWS_REGION_USEAST", ...
 - Common approach is one RSE per storage class at the site
- RSEs collect all necessary metadata for a storage system
 - Protocols, hostnames, ports, prefixes, paths, implementations, ...
 - O Data access priorities can be set, e.g., to prefer a different protocol for LAN-only access
- RSEs can be assigned metadata as well
 - Key/Value pairs, e.g., country=UK, type=TAPE, is_cached=False, ...
 - You can use RSE expressions to describe a list of RSEs, e.g. country=FR&type=DISK for the replication rules

Rucio concepts - Declarative data management

- Express what you want, not how you want it
 - e.g., "Three copies of this dataset, distributed evenly across multiple continents, with at least one copy on TAPE"

Replication rules

- Rules can be dynamically added and removed by all users, some pending authorisation
- Evaluation engine resolves all rules and tries to satisfy them by requesting transfers and deletions
- Lock data against deletion in particular places for a given lifetime
- Primary replicas have indefinite lifetime rules
- Cached replicas are dynamically created replicas based on traced usage and popularity
- Workflow system can drive rules automatically, e.g., job to data flows or vice-versa

Subscriptions

- Automatically generate rules for newly registered data matching a set of filters or metadata
- e.g., project=data17 13TeV and data type=AOD uniformly across T1s

Rucio concepts - Metadata

- Rucio supports different kinds of metadata
 - File internal metadata, e.g., size, checksum, creation time, status
 - Fixed physics metadata, e.g., number of events, lumiblock, cross section, ...
 - Internal metadata necessary for the organisation of data, e.g., replication factor, job-id,
 - Generic metadata that can be set by the users
- Generic metadata can be restricted
 - Enforcement possible by types and schemas
 - Naming convention enforcement and automatic metadata extraction
- Provides additional namespace to organise the data
 - Searchable via name and metadata
 - Aggregation based on metadata searches
 - Can also be used for long-term reporting, e.g., evolution of particular metadata selection over time

Monitoring & analytics

ACADE CALLEGO MEN ON PROPERTY OF PROPERTY

Account Usage Overview (in TB)

RucioUI

- Provides several views for different types of users
- Normal users: Data discovery and details, transfer requests and monitoring
- Site admins: Quota management and transfer approvals
- Central administration: Account / Identity / Site management

Monitoring

- Internal system health monitoring with Graphite / Grafana
- Transfer / Deletion / ... monitoring built on HDFS, ElasticSearch, and Spark
- Messaging with STOMP

Analytics and accounting

- o e.g., Show which the data is used, where and how space is used, ...
- Data reports for long-term views
- Built on Hadoop and Spark

Development

- Release cycle and support period
 - Bi-weekly patch releases (Bugfixes, minor enhancements)
 - ~3 feature (named) releases per year (Features, major changes)
 - Once a year a feature version is designated as a Long-Term Support (LTS) release
- LTS releases are always at least 12 month overlapping
- Development organized as open-source community project
 - Weekly development meetings; Release roadmap for each feature release
 - Contributors describe their planned developments, receive comments from community
 - Extensive integration and unit testing across all supported databases

Ongoing topics

- Tackling the HL-LHC challenge
 - o DOMA, ESCAPE, and more!
 - New protocols and third-party-copy
 - Security, authentication, tokens
 - Caching and access
 - Quality of Service & Data Carousel
 - Commercial clouds
 - 0 ...
- Better deployment and documentation
 - O Docker, Singularity, Kubernetes
 - "Stack Overflow"-like community site
- Adoption by more communities

https://indico.cern.ch/event/773049/contributions/3474416/

GSoC sneak peek

GSoC sneak peek

GSoC sneak peek


```
Checking model availability...
Loading AnswerDetector...
Loading SearchEngines...
DonkeyBot ready to be asked!
CTRL+C to exit donkeybot
ask question: How are Rucio users authenticated?
how many answers: 1
Predicting answers from 2 document(s)...
100%
                                                                                                                    2/2 [00:07<00:00, 3.69s/it]
Predicting answers from 2 document(s)...
                                                                                                                    2/2 [00:06<00:00, 3.24s/it]
Total inference time: 13.91 seconds
ANSWERS: (descending order)
Question: 'How are Rucio users authenticated?'
Answer: 'Rucio user is authenticated by credentials, such as X509 certificates,
. For more info check: https://github.com/rucio/rucio/blob/master/doc/source/overview Rucio account.rst
Confidence: 0.8403105424895546
Ouestion: 'How are Rucio users authenticated?'
Most Similar FAQ Answer: 'You can find the contact information for all authors and contributors to Rucio on:
https://github.com/rucio/rucio/blob/master/AUTHORS.rst
Most similar FAQ question: Who are the Rucio authors?
Author: Vasilis
```